Final Exam Mathematical Physics, Prof. G. Palasantzas

- Date 17-06-2016
- Total number of points 100
- 10 points free for coming to the final exam

- For all problems justify your answer

Problem 1 (10 points)

Show that $\quad \lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0 \quad$ with $x \in(-\infty,+\infty)$

Problem 2 (15 points)

Consider the power series: $\quad \sum_{n=1}^{\infty} \frac{n}{3^{n}}(x-5)^{n}$
Find the range of convergence of the given series (Tip: Find the values of x for which the series is absolutely and conditionally convergent)

Problem 3 (20 points)

Suppose a mass m is attached to a spring with spring constant k so that $k=m \omega^{2}$. If an external force $F(t)=F_{o} \cos (\omega t)$ is applied to the mass m , then the equation of motion of the mass m will be given by:

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t) \quad \text { with } c^{2}-4 m k<0
$$

$\left.\begin{array}{l}\text { Then prove* that } \\ \text { the motion is }\end{array}\right] x(t)=e^{-(c / 2 m) t}\left[c_{1} \cos (\tilde{\omega} t)+c_{2} \sin (\tilde{\omega} t)\right]+\left(\frac{F_{o}}{c \omega}\right) \sin (\omega t)$ described by the
general solution: with $\tilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}}$ and c_{1}, c_{2} constants .
*It is not a proof to substitute the solution and show that it satisfies the equation of motion. You have to derive the general solution using the method of undetermined coefficients.

Problem 4 (10 points)

Find the periodic solutions in complex form of the equation $\frac{d^{2} W}{d x^{2}}+A W=f(x)$
with $\mathrm{A}(\neq 0)$ a real (non-integer) number, and $\mathrm{f}(\mathrm{x})$ a known 2π-periodic function.
To this end consider the Fourier series form for f and $W: f(x)=\sum_{n=-\infty}^{n=+\infty} f_{e^{i n x}}, W(x)=\sum_{n=-\infty}^{n=+\infty} W_{n} e^{i x x}$

Problem 5 (15 points)

Assume a function $f(x)$ has the Fourier transform: $\quad F(k)=\int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi k x} d x$
Consider the definition of the Dirac delta function: $\delta(k)=\int_{-\infty}^{+\infty} e^{-i 2 \pi k x} d x$
(a: 5 points) Derive the Fourier transform of the function: $f(x)=\sin \left[2 \pi k_{o} x\right]$
(b: 10 points) Derive the Fourier Transform of the function: $f(x)=\sin ^{3}\left[2 \pi k_{o} x\right]$
Tip: $\sin (x)=\left(e^{i x}-e^{-i x}\right) / 2 i$, and if it helps consider the identity $\sin (3 x)=3 \sin (x)-4 \sin ^{3}(x)$

Problem 6 (20 points)

Consider the boundary value problem for the one-dimensional heat equation for a bar with the zero temperature ends, where $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is the temperature:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u=u(x, t), \quad t>0, \quad 0<x<L \\
& u(x, 0)=f(x), \quad(1) \\
& u(0, t)=0, \quad u(L, t)=0, \quad t \geq 0
\end{aligned}
$$

(a: 10 points) Prove that the general solution for the boundary value problem (1) is given by:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\lambda_{n}^{2} t} \sin \frac{n \pi}{L} x
$$

(b: 5 points) Derive the solution $u(x, t)$ for the case $f(x)=A \sin (m \pi x / L)$ where $\mathrm{m}=9$ and A a real positive number
(c: 5 points) Derive the solution $u(x, t)$ for the case $f(x)=A_{1} \sin \left(m_{1} \pi x / L\right)+A_{2} \sin \left(m_{2} \pi x / L\right)+$ $A_{3} \sin \left(m_{3} \pi x / L\right)$ where $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right)=(10,20,30)$ and $\mathrm{A}_{\mathrm{j}=(1,2,3)}$ are real positive numbers.

